The poset structures admitting the extended binary Golay code to be a perfect code

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The poset structures admitting the extended binary Golay code to be a perfect code

Brualdi et al. [Codes with a poset metric, Discrete Math. 147 (1995) 57–72] introduced the concept of poset codes, and gave an example of poset structure which admits the extended binary Golay code to be a 4-error-correcting perfect P-code. In this paper we classify all of the poset structures which admit the extended binary Golay code to be a 4-error-correcting perfect P-code, and show that th...

متن کامل

The poset structures admitting the extended binary Hamming code to be a perfect code

Brualdi et al. introduced the concept of poset codes, and gave an example of poset structure which admits the extended binary Hamming code to be a double-error-correcting perfect P-code. Our study is motivated by this example. In this paper we classify all poset structures which admit the extended binary Hamming code to be a double or triple-error-correcting perfect P-code. © 2004 Elsevier B.V....

متن کامل

Constructing the Extended Binary Golay Code

Coding theory is the subject which is concerned with how information can be sent over a noisy channel. A code then is a collection of codewords which are strings of a fixed number of letters from an alphabet. Some of these strings are codewords others are not. When a codeword is sent over a channel there is a probability less than /2 that each letter in the codeword will be changed, thus introd...

متن کامل

A New Construction for the Extended Binary Golay Code

We give a new construction of the extended binary Golay code. The construction is carried out by taking the Gray image of a self-dual linear code over the ring R = F2+uF2+vF2+uvF2 of length 6 and size 212. Writing a typical generating matrix of the form [I3|A], with A being a 3× 3 matrix over R, and finding some dependencies among the entries of A, we are able to set a general form for the gene...

متن کامل

The Golay Code Outperforms the Extended Golay Code Under Hard-Decision Decoding

We show that the binary Golay code is slightly more power efficient than the extended binary Golay code under maximum-likelihood (ML), hard-decision decoding. In fact, if a codeword from the extended code is transmitted, one cannot achieve a higher probability of correct decoding than by simply ignoring the 24th symbol and using an ML decoder for the non-extended code on the first 23 symbols. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2008

ISSN: 0012-365X

DOI: 10.1016/j.disc.2007.07.111